If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-100=180
We move all terms to the left:
8x^2-100-(180)=0
We add all the numbers together, and all the variables
8x^2-280=0
a = 8; b = 0; c = -280;
Δ = b2-4ac
Δ = 02-4·8·(-280)
Δ = 8960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8960}=\sqrt{256*35}=\sqrt{256}*\sqrt{35}=16\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{35}}{2*8}=\frac{0-16\sqrt{35}}{16} =-\frac{16\sqrt{35}}{16} =-\sqrt{35} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{35}}{2*8}=\frac{0+16\sqrt{35}}{16} =\frac{16\sqrt{35}}{16} =\sqrt{35} $
| x-(-15)=7 | | 85+(70-x)+(95-x)=180 | | 3x²+2=-190 | | 49^x=7x^2-15 | | 3x-6=5x+22 | | P(x)=-18x^2-48x | | 1/2(2m+10)=5+m | | w+148=180 | | d=7.5 | | 12+x5=7x+3 | | 15(y-4)-2(y-9)+5(y-6)=0 | | 40X+25y=580 | | 13x-21-2=27x+12-5x-2x | | (3/4)g=-12 | | 2m–15=–5 | | x+96=85 | | -8-x=-8 | | 5v-12=14 | | 4(a=1) | | 20x+120=80 | | x+90=148 | | 40+(6x+2)=180 | | 1/2(x-5)+2/4x=2-3/4x | | a+(16)=-32 | | 10+5=x | | (k+1)/3-k/5=3 | | 43+(2x+7)=180 | | 8.1b=65.8 | | 24x-18-17x+39=0 | | 5x-5+46=11x-7 | | (95-2x)+85+x=180 | | 145+a=15 |